
CakePHP-Upload Documentation
Release 3.0.0

Jose Diaz-Gonzalez

February 25, 2016

Contents

1 Introduction 3
1.1 Upload Plugin 3.0 . 3
1.2 Background . 3
1.3 Requirements . 3
1.4 What does this plugin do? . 3
1.5 This plugin does not do . 4

2 Installation 5
2.1 Using Composer . 5
2.2 Enable plugin . 5

3 Examples 7
3.1 Basic example . 7
3.2 Displaying links to files in your view . 8

4 Behavior configuration options 11

5 Upload Plugin Interfaces 13
5.1 ProcessorInterface . 13
5.2 TransformerInterface . 13
5.3 WriterInterface . 13

6 Indices and tables 15

i

ii

CakePHP-Upload Documentation, Release 3.0.0

Contents:

Contents 1

CakePHP-Upload Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Introduction

1.1 Upload Plugin 3.0

The Upload Plugin is an attempt to sanely upload files using techniques garnered from packages such as MeioUpload
, UploadPack and PHP documentation. It uses the excellent Flysystem <http://flysystem.thephpleague.com/> library
to handle file uploads, and can be easily integrated with any image library to handle thumbnail extraction to your exact
specifications.

1.2 Background

Media Plugin is too complicated, and it was a PITA to merge the latest updates into MeioUpload, so here I am, building
yet another upload plugin. I’ll build another in a month and call it “YAUP”.

1.3 Requirements

• CakePHP 3.x

• PHP 5.4+

• Patience

1.4 What does this plugin do?

• The Upload plugin will transfer files from a form in your application to (by default) the webroot/files
directory organised by the model name and upload field name.

• It can also move files around programatically. Such as from the filesystem.

• The path to which the files are saved can be customised.

• The plugin can also upload multiple files at the same time to different fields.

• Each upload field can be configured independantly of each other, such as changing the upload path etc.

• Uploaded file information can be stored in a data store, such as a MySQL database.

• You can upload files to both disk as well as distributed datastores such as S3 or Dropbox.

3

CakePHP-Upload Documentation, Release 3.0.0

1.5 This plugin does not do

• Create thumbnails. You can use a custom Transformer to create modified versions of file uploads.

• It will not convert files between file types. You cannot use it convert a JPG to a PNG

• It will not add watermarks to images for you.

• It will not validate anything about your save.

• Delete files on entity delete. This is a future enhancement.

4 Chapter 1. Introduction

CHAPTER 2

Installation

The only officialy supported method of installing this plugin is via composer.

2.1 Using Composer

View on Packagist, and copy the json snippet for the latest version into your project’s composer.json. Eg, v. 3.0.0
would look like this:

{
"require": {

"josegonzalez/cakephp-upload": "3.0.0"
}

}

This plugin has the type cakephp-plugin set in its own composer.json, composer knows to install it inside
your /Plugins directory, rather than in the usual vendors file. It is recommended that you add /Plugins/Upload
to your .gitignore file. (Why? read this.)

2.2 Enable plugin

You need to enable the plugin your config/bootstrap.php file:

<?php
Plugin::load('Josegonzalez/Upload');

If you are already using Plugin::loadAll();, then this is not necessary.

5

https://packagist.org/packages/josegonzalez/cakephp-upload
http://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md

CakePHP-Upload Documentation, Release 3.0.0

6 Chapter 2. Installation

CHAPTER 3

Examples

3.1 Basic example

Note: You may want to define the Upload behavior before the core Translate Behavior as they have been
known to conflict with each other.

CREATE table users (
id int(10) unsigned NOT NULL auto_increment,
username varchar(20) NOT NULL,
photo varchar(255)

);

<?php
namespace App\Model\Table;
use Cake\ORM\Table;

class UsersTable extends Table
{

public function initialize(array $config)
{

$this->table('users');
$this->displayField('name');
$this->primaryKey('id');
$this->addBehavior('Josegonzalez/Upload.Upload', [

// You can configure as many upload fields as possible,
// where the pattern is `field` => `config`
//
// Keep in mind that while this plugin does not have any limits in terms of
// number of files uploaded per request, you should keep this down in order
// to decrease the ability of your users to block other requests.
'photo' => []

]);
}

}
?>

<?php echo $this->Form->create('User', ['type' => 'file']); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', ['type' => 'file']); ?>
<?php echo $this->Form->end(); ?>

Using the above setup, uploaded files cannot be deleted. To do so, a field must be added to store the directory of the
file as follows:

7

CakePHP-Upload Documentation, Release 3.0.0

CREATE table users (
`id` int(10) unsigned NOT NULL auto_increment,
`username` varchar(20) NOT NULL,
`photo` varchar(255) DEFAULT NULL,
`photo_dir` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)

);

<?php

<?php
namespace App\Model\Table;
use Cake\ORM\Table;

class UsersTable extends Table
{

public function initialize(array $config)
{

$this->table('users');
$this->displayField('name');
$this->primaryKey('id');
$this->addBehavior('Josegonzalez/Upload.Upload', [

'photo' => [
'fields' => [

// if these fields or their defaults exist
// the values will be set.
'dir' => 'photo_dir', // defaults to `dir`
'size' => 'photo_size', // defaults to `size`
'type' => 'photo_type', // defaults to `type`

],
],

]);
}

}
?>

<?php echo $this->Form->create('User', ['type' => 'file']); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', ['type' => 'file']); ?>
<?php echo $this->Form->input('User.photo_dir', ['type' => 'hidden']); ?>

<?php echo $this->Form->end(); ?>

3.2 Displaying links to files in your view

Once your files have been uploaded you can link to them using the HtmlHelper by specifying the path and using
the file information from the database.

This example uses the default behaviour configuration using the model Example.

<?php
// assuming an entity that has the following
// data that was set from your controller to your view
$entity = new Entity([

'photo' => 'imageFile.jpg',
'photo_dir' => '7'

]);

8 Chapter 3. Examples

CakePHP-Upload Documentation, Release 3.0.0

$this->set('entity', $entity);

// You could use the following to create a link to
// the image (with default settings in place of course)
echo $this->Html->link('../files/example/image/' . $entity->photo_dir . '/' . $entity->photo);
?>

You can optionally create a custom helper to handle url generation, or contain that within your entity. As it is im-
possible to detect what the actual url for a file should be, such functionality will never be made available via this
plugin.

3.2. Displaying links to files in your view 9

CakePHP-Upload Documentation, Release 3.0.0

10 Chapter 3. Examples

CHAPTER 4

Behavior configuration options

This is a list of all the available configuration options which can be passed in under each field in your behavior
configuration.

• pathProcessor: Returns a ProcessorInterface class name.

– Default: (string) Josegonzalez\Upload\File\Path\DefaultProcessor

• writer: Returns a WriterInterface class name.

– Default: (string) Josegonzalez\Upload\File\Writer\DefaultWriter

• transformer: Returns a TransformerInterface class name. Can also be a PHP callable.

– Default: (string) Josegonzalez\Upload\File\Transformer\DefaultTransformer

• path: A path relative to the filesystem.root. Should end in {DS}

– Default: (string) ’webroot{DS}files{DS}{model}{DS}{field}{DS}’

– Tokens:

* {DS}: Replaced by a DIRECTORY_SEPARATOR

* {model}: Replaced by the Table-alias() method.

* {table}: Replaced by the Table->table() method.

* {field}: Replaced by the field name.

* {primaryKey}: Replaced by the entity primary key, when available. If used on a new record being
created, will have undefined behavior.

* {time}: Replaced by time()

* {microtime}: Replaced by microtime()

• fields: An array of fields to use when uploading files

– Options:

* fields.dir: (default dir) Field to use for storing the directory

* fields.type: (default type) Field to use for storing the filetype

* fields.size: (default size) Field to use for storing the filesize

• filesystem: An array of configuration info for configuring the writer

If using the DefaultWriter, the following options are available:

– Options:

11

CakePHP-Upload Documentation, Release 3.0.0

* filesystem.root: (default ROOT . DS) Directory where files should be written to by
default

* filesystem.adapter: (default Local Flysystem Adapter) A Flysystem-compatible
adapter. Can also be a callable that returns an adapter.

• nameCallback: A callable that can be used by the default pathProcessor to rename a file. Only handles
original file naming.

– Default: NULL

– Available arguments:

* array $data: The upload data

* array $settings: UploadBehavior settings for the current field

– Return: (string) the new name for the file

12 Chapter 4. Behavior configuration options

CHAPTER 5

Upload Plugin Interfaces

For advanced usage of the upload plugin, you will need to implement one or more of the followng interfaces.

5.1 ProcessorInterface

Fully-namespaced class name: Josegonzalez\Upload\File\Path\ProcessorInterface

This interface is used to create a class that knows how to build paths for a given file upload. Other than the constructor,
it contains two methods:

• basepath: Returns the basepath for the current field/data combination

• filename: Returns the filename for the current field/data combination

Refer to Josegonzalez\Upload\File\Path\DefaultProcessor for more details.

5.2 TransformerInterface

Fully-namespaced class name: Josegonzalez\Upload\File\Transformer\TransformerInterface

This interface is used to transform the uploaded file into one or more files that will be written somewhere to disk. This
can be useful in cases where you may wish to use an external library to extract thumbnails or create PDF previews.
The previous image manipulation functionality should be created at this layer.

Other than the constructor, it contains one method:

• transform: Returns an array of key/value pairs, where the key is a file on disk and the value is the name of
the output file. This can be used for properly naming uploaded/created files.

Refer to Josegonzalez\Upload\File\Transformer\DefaultTransformer for more details. You may
also wish to look at Josegonzalez\Upload\File\Transformer\SlugTransformer as an alternative.

5.3 WriterInterface

Fully-namespaced class name: Josegonzalez\Upload\File\Writer\WriterInterface

This interface is used to actually write files to disk. It writes files to disk using the Flysystem library, and defaults
to local storage by default. Implement this interface if you want to customize the file writing process.

Other than the constructor, it contains one methods:

13

CakePHP-Upload Documentation, Release 3.0.0

• write: Writes a set of files to an output.

Refer to Josegonzalez\Upload\File\Writer\DefaultWriter for more details.

14 Chapter 5. Upload Plugin Interfaces

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	Introduction
	Upload Plugin 3.0
	Background
	Requirements
	What does this plugin do?
	This plugin does not do

	Installation
	Using Composer
	Enable plugin

	Examples
	Basic example
	Displaying links to files in your view

	Behavior configuration options
	Upload Plugin Interfaces
	ProcessorInterface
	TransformerInterface
	WriterInterface

	Indices and tables

