

 Navigation

 	
 index

 	
 next |

 	CakePHP-Upload 1.3.0 documentation

Welcome to CakePHP-Upload’s documentation!

Contents:

	 Introduction
	Upload Plugin 2.0

	Background

	Requirements

	What does this plugin do?

	This plugin does not do

	Installation
	Using Composer

	Manual

	GIT Submodule

	GIT Clone

	Imagick Support

	Enable plugin

	 Examples
	Basic example

	Displaying links to files in your view

	Uploading Multiple files

	Remove a current file without deleting the entire record

	Saving two uploads into different folders

	Changing the upload path dynamically

	 Configuration options

	 Associating many images to one item

	 Generating thumbnails
	PDF Support

	 Validating uploads
	isUnderPhpSizeLimit

	isUnderFormSizeLimit

	isCompletedUpload

	isFileUpload

	isFileUploadOrHasExistingValue

	tempDirExists

	isSuccessfulWrite

	noPhpExtensionErrors

	isValidMimeType

	isWritable

	isValidDir

	isBelowMaxSize

	isAboveMinSize

	isValidExtension

	isAboveMinHeight

	isBelowMaxHeight

	isAboveMinWidth

	isBelowMaxWidth

	 File import behavior

	 Thumbnail generation shell
	What it does

	How it works

	Running the shell

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Introduction

Upload Plugin 2.0

The Upload Plugin is an attempt to sanely upload files using techniques garnered from packages such as MeioUpload , UploadPack and PHP documentation.

Background

Media Plugin is too complicated, and it was a PITA to merge the latest updates into MeioUpload, so here I am, building yet another upload plugin. I’ll build another in a month and call it “YAUP”.

Requirements

	CakePHP 2.x

	Imagick/GD PHP Extension (for thumbnail creation)

	PHP 5

	Patience

What does this plugin do?

	The Upload plugin will transfer files from a form in your application to (by default) the webroot/files directory organised by the model name and primaryKey field.

	It can also move files around programatically. Such as from the filesystem.

	The path to which the files are saved can be customised.

	It can also create thumbnails for image files if the thumbnails option is set in the behaviour options.

	The plugin can also upload multiple files at the same time to different fields.

	Each upload field can be configured independantly of each other, such as changing the upload path or thumbnail options.

	Uploaded file information can be stored in a data store, such as a MySQL database.

	A variety of validation rules are provided to help validate against common rules.

This plugin does not do

	It will not convert files between file types. You cannot use it convert a JPG to a PNG

	It will not add watermarks to images for you.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Installation

Using Composer [http://getcomposer.org/]

View on
Packagist [https://packagist.org/packages/josegonzalez/cakephp-upload],
and copy the json snippet for the latest version into your project’s
composer.json. Eg, v. 2.x-dev would look like this:

{
 "require": {
 "josegonzalez/cakephp-upload": "2.x-dev"
 }
}

This plugin has the type cakephp-plugin set in its own
composer.json, composer knows to install it inside your /Plugins
directory, rather than in the usual vendors file. It is recommended that
you add /Plugins/Upload to your .gitignore file. (Why? read
this [http://getcomposer.org/doc/faqs/should-i-commit-the-dependencies-in-my-vendor-directory.md].)

Manual

	Download this:
https://github.com/josegonzalez/cakephp-upload/archive/2.x.zip

	Unzip that download.

	Copy the resulting folder to app/Plugin

	Rename the folder you just copied to Upload

GIT Submodule

In your app directory type:

git submodule add -b 2.x git://github.com/josegonzalez/cakephp-upload.git Plugin/Upload
git submodule init
git submodule update

GIT Clone

In your Plugin directory type:

git clone -b 2.x git://github.com/josegonzalez/cakephp-upload.git Upload

Imagick Support

To enable Imagick [http://www.imagemagick.org/] support, you need to
have Imagick installed:

Debian systems
sudo apt-get install php5-imagick

OS X Homebrew
brew tap homebrew/dupes
brew tap josegonzalez/homebrew-php
brew install php54-imagick

From pecl
pecl install imagick

If you cannot install Imagick, instead configure the plugin with
'thumbnailMethod' => 'php' in the files options.

Enable plugin

You need to enable the plugin your app/Config/bootstrap.php file:

<?php
CakePlugin::load('Upload');

If you are already using CakePlugin::loadAll();, then this is not
necessary.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Examples

Basic example

Note: You may want to define the Upload behavior before the core
Translate Behavior as they have been known to conflict with each
other.

CREATE table users (
 id int(10) unsigned NOT NULL auto_increment,
 username varchar(20) NOT NULL,
 photo varchar(255)
);

<?php
class User extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'photo'
)
);
}
?>

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
<?php echo $this->Form->input('User.username'); ?>
<?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
<?php echo $this->Form->end(); ?>

Using the above setup, uploaded files cannot be deleted. To do so, a
field must be added to store the directory of the file as follows:

CREATE table users (
 `id` int(10) unsigned NOT NULL auto_increment,
 `username` varchar(20) NOT NULL,
 `photo` varchar(255) DEFAULT NULL,
 `photo_dir` varchar(255) DEFAULT NULL,
 PRIMARY KEY (`id`)
);

<?php
class User extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'photo' => array(
 'fields' => array(
 'dir' => 'photo_dir'
)
)
)
);
}
?>

In the above example, photo can be a file upload via a file input within
a form, a file grabber (from a url) via a text input, OR programatically
used on the controller to file grab via a url.

File Upload Example

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
 <?php echo $this->Form->input('User.username'); ?>
 <?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
 <?php echo $this->Form->input('User.photo_dir', array('type' => 'hidden')); ?>
<?php echo $this->Form->end(); ?>

File Grabbing via Form Example

<?php echo $this->Form->create('User', array('type' => 'file')); ?>
 <?php echo $this->Form->input('User.username'); ?>
 <?php echo $this->Form->input('User.photo', array('type' => 'file')); ?>
 <?php echo $this->Form->input('User.photo_dir', array('type' => 'hidden')); ?>
<?php echo $this->Form->end(); ?>

Programmatic File Retrieval without a Form

<?php
$this->User->set(array('photo' => $image_url));
$this->User->save();
?>

Thumbnail Creation

Thumbnails are not automatically created. To do so, thumbnail sizes must
be defined: Note: by default thumbnails will be generated by imagick, if
you want to use GD you need to set the thumbnailMethod attribute.
Example: 'thumbnailMethod' => 'php'.

<?php
class User extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'photo' => array(
 'thumbnailSizes' => array(
 'xvga' => '1024x768',
 'vga' => '640x480',
 'thumb' => '80x80'
)
)
)
);
}
?>

Displaying links to files in your view

Once your files have been uploaded you can link to them using the HtmlHelper by specifying the path and using the file information from the database.

This example uses the default behaviour configuration using the model Example.

<?php
$exampleData = [
 'Example' => [
 'image' => 'imageFile.jpg',
 'dir' => '7'
]
];

echo $this->Html->link('../files/example/image/' . $exampleData['Example']['dir'] . '/' . $exampleData['Example']['image']);
?>

If we have configured a thumbnail in our application. We can simply prefix our file with the name of that thumbnail.

<?php
echo $this->Html->link('../files/example/image/' . $exampleData['Example']['dir'] . '/thumb_' . $exampleData['Example']['image']);
?>

Uploading Multiple files

Multiple files can also be attached to a single record:

<?php
class User extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'resume',
 'photo' => array(
 'fields' => array(
 'dir' => 'profile_dir'
)
)
)
);
}
?>

Each key in the Upload.Upload array is a field name, and can
contain it’s own configuration. For example, you might want to set
different fields for storing file paths:

<?php
class User extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'resume' => array(
 'fields' => array(
 'dir' => 'resume_dir',
 'type' => 'resume_type',
 'size' => 'resume_size',
)
),
 'photo' => array(
 'fields' => array(
 'dir' => 'photo_dir',
 'type' => 'photo_type',
 'size' => 'photo_size',
)
)
)
);
}
?>

Keep in mind that while this plugin does not have any limits in terms of
number of files uploaded per request, you should keep this down in order
to decrease the ability of your users to block other requests.

If you are looking to add an unknown or high number of uploads to a
model it’s worth considering using a polymorphic
attachment.

Remove a current file without deleting the entire record

In some cases you might want to remove a photo or uploaded file without
having to remove the entire record from the Model. In this case you
would use the following code:

<?php
echo $this->Form->create('Model', array('type' => 'file'));
echo $this->Form->input('Model.file.remove', array('type' => 'checkbox', 'label' => 'Remove existing file'));
?>

Saving two uploads into different folders

Sometimes you might want to upload more than one file, but upload each
file into a different folder. This is actually very simple. By simply
using the behavior configuration for each file you can change the
path. Don’t forget to make sure the plugin is installed
first.

Let’s assume for this example that we want to upload a picture of a
user, and say, a picture of their car. For the sake of simplicity we’ll
also assume that these files are just stored in the User model.

Note: It’s important to notice that each field can have it’s own
configuration.

<?php
// app/Model/User.php
public $actsAs = array(
 'Upload.Upload' => array(
 'avatar' => array(// The name of the field in our database, so this is `users.avatar`
 'rootDir' => ROOT, // Here we can define the rootDir, which is the root of the application, usually an absolute path to your project
 'path' => '{ROOT}{DS}webroot{DS}files{DS}{model}{DS}{field}{DS}', // The path pattern that we want to use to save our file where {DS} is the directory separator and the {ROOT}, {model} and {field} tokens are replaced with their matching values
 'fields' => array(
 'dir' => 'image_dir' // It's always helpful to save the directory our files are in, just in case
)
),
 'car' => array(
 'path' => '{ROOT}{DS}webroot{DS}files{DS}cars{DS}' // Here we have changed the path, so our images will now be in a different folder
)
)
)

Changing the upload path dynamically

If you need to change the path of the upload dynamically you can do that by changing the behavior settings in your model.
Perhaps in a model callback such as beforeSave().

<?php
// app/Model/User.php
$this->Behaviors->Upload->settings['field']['path'] = $newPath;
?>

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Behavior configuration options

This is a list of all the available configuration options which can be
passed in under each field in your behavior configuration.

	pathMethod: The method to use for file paths. This is appended to
the path option below
	Default: (string) primaryKey

	Options:
	flat: Does not create a path for each record. Files are
moved to the value of the ‘path’ option.

	primaryKey: Path based upon the record’s primaryKey is
generated. Persists across a record update.

	random: Random path is generated for each file upload in
the form nn/nn/nn where nn are random numbers. Does not
persist across a record update.

	randomCombined: Random path - with model id - is generated
for each file upload in the form ID/nn/nn/nn where ID
is the current model’s ID and nn are random numbers. Does
not persist across a record update.

	path: A path relative to the rootDir. Should end in {DS}
	Default: (string)
'{ROOT}webroot{DS}files{DS}{model}{DS}{field}{DS}'

	Tokens:
	{ROOT}: Replaced by a rootDir option

	{DS}: Replaced by a DIRECTORY_SEPARATOR

	{model}: Replaced by the Model Alias.

	{field}: Replaced by the field name.

	{primaryKey}: Replaced by the record primary key, when
available. If used on a new record being created, will have
undefined behavior.

	{size}: Replaced by a zero-length string (the empty string)
when used for the regular file upload path. Only available for
resized thumbnails.

	{geometry}: Replaced by a zero-length string (the empty string)
when used for the regular file upload path. Only available for
resized thumbnails.

	fields: An array of fields to use when uploading files
	Default: (array)
array('dir' => 'dir', 'type' => 'type', 'size' => 'size')

	Options:
	dir: Field to use for storing the directory

	type: Field to use for storing the filetype

	size: Field to use for storing the filesize

	rootDir: Root directory for moving images. Auto-prepended to
path and thumbnailPath where necessary
	Default (string) ROOT . DS . APP_DIR . DS

	mimetypes: Array of mimetypes to use for validation
	Default: (array) empty

	extensions: Array of extensions to use for validation
	Default: (array) empty

	maxSize: Max filesize in bytes for validation
	Default: (int) 2097152

	minSize: Minimum filesize in bytes for validation
	Default: (int) 8

	maxHeight: Maximum image height for validation
	Default: (int) 0

	minHeight: Minimum image height for validation
	Default: (int) 0

	maxWidth: Maximum image width for validation
	Default: (int) 0

	minWidth: Minimum image width for validation
	Default: (int) 0

	deleteOnUpdate: Whether to delete files when uploading new
versions (potentially dangerous due to naming conflicts)
	Default: (boolean) false

	thumbnails: Whether to create thumbnails or not
	Default: (boolean) true

	thumbnailMethod: The method to use for resizing thumbnails
	Default: (string) imagick

	Options:
	imagick: Uses the PHP imagick extension to generate
thumbnails

	php: Uses the built-in PHP methods (GD extension) to
generate thumbnails. Does not support BMP images.

	thumbnailName: Naming style for a thumbnail
	Default: NULL

	Note: The tokens {size}, {geometry} and {filename} are
valid for naming and will be auto-replaced with the actual terms.

	Note: As well, the extension of the file will be automatically
added.

	Note: When left unspecified, will be set to {size}_{filename}
or {filename}_{size} depending upon the value of
thumbnailPrefixStyle

	thumbnailPath: A path relative to the rootDir where
thumbnails will be saved. Should end in {DS}. If not set,
thumbnails will be saved at path.
	Default: NULL

	Tokens:
	{ROOT}: Replaced by a rootDir option

	{DS}: Replaced by a DIRECTORY_SEPARATOR

	{model}: Replaced by the Model Alias

	{field}: Replaced by the field name

	{size}: Replaced by the size key specified by a given
thumbnailSize

	{geometry}: Replaced by the geometry value specified by a given
thumbnailSize

	thumbnailPrefixStyle: Whether to prefix or suffix the style onto
thumbnails
	Default: (boolean) true prefix the thumbnail

	Note that this overrides thumbnailName when thumbnailName
is not specified in your config

	thumbnailQuality: Quality of thumbnails that will be generated,
on a scale of 0-100. Not supported gif images when using GD for image
manipulation.
	Default: (int) 75

	thumbnailSizes: Array of thumbnail sizes, with the size-name
mapping to a geometry
	Default: (array) empty

	thumbnailType: Override the type of the generated thumbnail
	Default: (mixed) false or png when the upload is a Media
file

	Options:
	Any valid image type

	mediaThumbnailType: Override the type of the generated thumbnail
for a non-image media (pdfs). Overrides thumbnailType
	Default: (mixed) png

	Options:
	Any valid image type

	saveDir: Can be used to turn off saving the directory
	Default: (boolean) true

	Note: Because of the way in which the directory is saved, if you
are using a pathMethod other than flat and you set saveDir
to false, you may end up in situations where the file is in a
location that you cannot predict. This is more of an issue for a
pathMethod of random and randomCombined than
primaryKey, but keep this in mind when fiddling with this
option

	deleteFolderOnDelete: Delete folder related to current record on
record delete
	Default: (boolean) false

	Note: Because of the way in which the directory is saved, if you
are using a pathMethod of flat, turning this setting on will
delete all your images. As such, setting this to true can be
potentially dangerous.

	keepFilesOnDelete: Keep all files when uploading/deleting a
record.
	Default: (boolean) false

	Note: This does not override deleteFolderOnDelete. If you set
that setting to true, your images may still be deleted. This is so
that existing uploads are not deleted - unless overwritten.

	mode: The UNIX permissions to set on the created upload
directories.
	Default: (integer) 0777

	handleUploadedFileCallback: If set to a method name available on
your model, this model method will handle the movement of the
original file on disk. Can be used in conjunction with
thumbnailMethod to store your files in alternative locations,
such as S3.
	Default: NULL

	Available arguments:
	string $field: Field being manipulated

	string $filename: The filename of the uploaded file

	string $destination: The configured destination of the
moved file

	nameCallback: A callback that can be used to rename a file.
Currently only handles original file naming.
	Default: NULL

	Available arguments:
	string $field: Field being manipulated

	string $currentName

	array $data

	array options:
	isThumbnail - a boolean field that is on when we are
trying to infer a thumbnail path

	rootDir - root directory to replace {ROOT}

	geometry

	size

	thumbnailType

	thumbnailName

	thumbnailMethod

	mediaThumbnailType

	dir field name

	saveType - create, update, delete

	Return: String - returns the new name for the file

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Using a polymorphic attachment model for file storage

In some cases you will want to store multiple file uploads for multiple
models, but will not want to use multiple tables because your database
is normalized. For example, we might have a Post model that can have
many images for a gallery, and a Message model that has many videos.
In this case, we would use an Attachment model:

Post hasMany Attachment

We could use the following database schema for the Attachment model:

CREATE table attachments (
 `id` int(10) unsigned NOT NULL auto_increment,
 `model` varchar(20) NOT NULL,
 `foreign_key` int(11) NOT NULL,
 `name` varchar(32) NOT NULL,
 `attachment` varchar(255) NOT NULL,
 `dir` varchar(255) DEFAULT NULL,
 `type` varchar(255) DEFAULT NULL,
 `size` int(11) DEFAULT 0,
 `active` tinyint(1) DEFAULT 1,
 PRIMARY KEY (`id`)
);

Our attachment records would thus be able to have a name and be
activated or deactivated on the fly. The schema is simply an example,
and such functionality would need to be implemented within your
application.

Once the attachments table has been created, we would create the
following model:

<?php
class Attachment extends AppModel {
 public $actsAs = array(
 'Upload.Upload' => array(
 'attachment' => array(
 'thumbnailSizes' => array(
 'xvga' => '1024x768',
 'vga' => '640x480',
 'thumb' => '80x80',
),
),
),
);

 public $belongsTo = array(
 'Post' => array(
 'className' => 'Post',
 'foreignKey' => 'foreign_key',
),
 'Message' => array(
 'className' => 'Message',
 'foreignKey' => 'foreign_key',
),
);
}
?>

We would also need to create a valid inverse relationship in the
Post model:

<?php
class Post extends AppModel {
 public $hasMany = array(
 'Image' => array(
 'className' => 'Attachment',
 'foreignKey' => 'foreign_key',
 'conditions' => array(
 'Image.model' => 'Post',
),
),
);
}
?>

The key thing to note here is the Post model has some conditions on
the relationship to the Attachment model, where the Image.model
has to be Post. Remember to set the model field to Post, or
whatever model it is you’d like to attach it to, otherwise you may get
incorrect relationship results when performing find queries.

We would also need a similar relationship in our Message model:

<?php
class Message extends AppModel {
 public $hasMany = array(
 'Video' => array(
 'className' => 'Attachment',
 'foreignKey' => 'foreign_key',
 'conditions' => array(
 'Video.model' => 'Message',
),
),
);
}
?>

Now that we have our models setup, we should create the proper actions
in our controllers. To keep this short, we shall only document the Post
model:

<?php
class PostsController extends AppController {
 /* the rest of your controller here */
 public function add() {
 if ($this->request->is('post')) {
 try {
 $this->Post->createWithAttachments($this->request->data);
 $this->Session->setFlash(__('The message has been saved'));
 } catch (Exception $e) {
 $this->Session->setFlash($e->getMessage());
 }
 }
 }
}
?>

In the above example, we are calling our custom
createWithAttachments method on the Post model. This will allow
us to unify the Post creation logic together in one place. That method
is outlined below:

<?php
class Post extends AppModel {
 /* the rest of your model here */

 public function createWithAttachments($data) {
 // Sanitize your images before adding them
 $images = array();
 if (!empty($data['Image'][0])) {
 foreach ($data['Image'] as $i => $image) {
 if (is_array($data['Image'][$i])) {
 // Force setting the `model` field to this model
 $image['model'] = 'Post';

 // Unset the foreign_key if the user tries to specify it
 if (isset($image['foreign_key'])) {
 unset($image['foreign_key']);
 }

 $images[] = $image;
 }
 }
 }
 $data['Image'] = $images;

 // Try to save the data using Model::saveAll()
 $this->create();
 if ($this->saveAll($data)) {
 return true;
 }

 // Throw an exception for the controller
 throw new Exception(__("This post could not be saved. Please try again"));
 }
}
?>

The above model method will:

	Ensure we only try to save valid images

	Force the foreign_key to be unspecified. This will allow saveAll to
properly associate it

	Force the model field to Post

Now that this is set, we just need a view for our controller. A sample
view for View/Posts/add.ctp is as follows (fields not necessary for
the example are omitted):

<?php
 echo $this->Form->create('Post', array('type' => 'file'));
 echo $this->Form->input('Image.0.attachment', array('type' => 'file', 'label' => 'Image'));
 echo $this->Form->input('Image.0.model', array('type' => 'hidden', 'value' => 'Post'));
 echo $this->Form->end(__('Add'));
?>

The one important thing you’ll notice is that I am not referring to the
Attachment model as Attachment, but rather as Image; when I
initially specified the $hasMany relationship between an
Attachment and a Post, I aliased Attachment to Image.
This is necessary for cases where many of your Polymorphic models may be
related to each other, as a type of hint to the CakePHP ORM to
properly reference model data.

I’m also using Model.{n}.field notation, which would allow you to
add multiple attachment records to the Post. This is necessary for
$hasMany relationships, which we are using for this example.

Once you have all the above in place, you’ll have a working Polymorphic
upload!

Please note that this is not the only way to represent file uploads, but
it is documented here for reference.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Thumbnail Sizes and Styles

The Upload plugin can automatically generate various thumbnails at
different sizes for you when uploading files. The thumbnails must be
configured in order for thumbnails to be generated.

To generate thumbnails you will need to configure the thumbnailSizes
option under the field you are configuring.

<?php
class User extends AppModel {
 public $name = 'User';
 public $actsAs = array(
 'Upload.Upload' => array(
 'photo' => array(// The field we are configuring for
 'thumbnailSizes' => array(// Various sizes of thumbnail to generate
 'big' => '200x200', // Resize for best fit to 200px by 200px, cropped from the center of the image. Prefix with big_
 'small' => '120x120',
 'thumb' => '80x80'
)
)
)
);
}
?>

Once this configuration is set when uploading a file a thumbnail will
automatically be generated with the prefix defined in the options. For
example (using default configuration)
app/webroot/files/Example/photo/1/big_example.jpg. Where Example
is the model, photo is the field, 1 is the model primaryKey
value and finally big_ is the thumbnail size prefix to the filename.

Thumbnail sizes only apply to images of the following types:

	image/bmp

	image/gif

	image/jpeg

	image/pjpeg

	image/png

	image/vnd.microsoft.icon

	image/x-icon

You can specify any of the following resize modes for your sizes:

	100x80 - resize for best fit into these dimensions, with
overlapping edges trimmed if original aspect ratio differs

	[100x80] - resize to fit these dimensions, with white banding if
original aspect ratio differs

	100w - maintain original aspect ratio, resize to 100 pixels wide

	80h - maintain original aspect ratio, resize to 80 pixels high

	80l - maintain original aspect ratio, resize so that longest side
is 80 pixels

	600mw - maintain original aspect ratio, resize to max 600 pixels
wide, or copy the original image if it is less than 600 pixels wide

	800mh - maintain original aspect ratio, resize to max 800 pixels
high, or copy the original image if it is less than 800 pixels high

	960ml - maintain original aspect ratio, resize so that longest
side is max 960 pixels, or copy the original image if the thumbnail
would be bigger than the original.

PDF Support

It is now possible to generate a thumbnail for the first page of a PDF
file. (Only works with the imagick thumbnailMethod.) Please read
about the Behavior options for more details as to
how to configure this plugin.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Validation rules

By default, no validation rules are attached to the model. You must
explicitly attach each rule if needed. Rules not referring to PHP upload
errors are configurable but fallback to the behavior configuration.

isUnderPhpSizeLimit

Check that the file does not exceed the max file size specified by PHP

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isUnderPhpSizeLimit',
 'message' => 'File exceeds upload filesize limit'
)
);
?>

isUnderFormSizeLimit

Check that the file does not exceed the max file size specified in the
HTML Form

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isUnderFormSizeLimit',
 'message' => 'File exceeds form upload filesize limit'
)
);
?>

isCompletedUpload

Check that the file was completely uploaded

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isCompletedUpload',
 'message' => 'File was not successfully uploaded'
)
);
?>

isFileUpload

Check that a file was uploaded

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isFileUpload',
 'message' => 'File was missing from submission'
)
);
?>

isFileUploadOrHasExistingValue

Check that either a file was uploaded, or the existing value in the
database is not blank

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isFileUploadOrHasExistingValue',
 'message' => 'File was missing from submission'
)
);
?>

tempDirExists

Check that the PHP temporary directory is missing

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'tempDirExists',
 'message' => 'The system temporary directory is missing'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('tempDirExists', false),
 'message' => 'The system temporary directory is missing'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isSuccessfulWrite

Check that the file was successfully written to the server

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'isSuccessfulWrite',
 'message' => 'File was unsuccessfully written to the server'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isSuccessfulWrite', false),
 'message' => 'File was unsuccessfully written to the server'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

noPhpExtensionErrors

Check that a PHP extension did not cause an error

<?php
public $validate = array(
 'photo' => array(
 'rule' => 'noPhpExtensionErrors',
 'message' => 'File was not uploaded because of a faulty PHP extension'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('noPhpExtensionErrors', false),
 'message' => 'File was not uploaded because of a faulty PHP extension'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isValidMimeType

Check that the file is of a valid mimetype

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidMimeType', array('application/pdf', 'image/png')),
 'message' => 'File is not a pdf or png'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidMimeType', array('application/pdf', 'image/png'), false),
 'message' => 'File is not a pdf or png'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isWritable

Check that the upload directory is writable

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isWritable'),
 'message' => 'File upload directory was not writable'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isWritable', false),
 'message' => 'File upload directory was not writable'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isValidDir

Check that the upload directory exists

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidDir'),
 'message' => 'File upload directory does not exist'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidDir', false),
 'message' => 'File upload directory does not exist'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isBelowMaxSize

Check that the file is below the maximum file upload size (checked in
bytes)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxSize', 1024),
 'message' => 'File is larger than the maximum filesize'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxSize', 1024, false),
 'message' => 'File is larger than the maximum filesize'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isAboveMinSize

Check that the file is above the minimum file upload size (checked in
bytes)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinSize', 1024),
 'message' => 'File is below the mimimum filesize'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinSize', 1024, false),
 'message' => 'File is below the mimimum filesize'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isValidExtension

Check that the file has a valid extension

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidExtension', array('pdf', 'png', 'txt')),
 'message' => 'File does not have a pdf, png, or txt extension'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isValidExtension', array('pdf', 'png', 'txt'), false),
 'message' => 'File does not have a pdf, png, or txt extension'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isAboveMinHeight

Check that the file is above the minimum height requirement (checked in
pixels)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinHeight', 150),
 'message' => 'File is below the minimum height'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinHeight', 150, false),
 'message' => 'File is below the minimum height'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isBelowMaxHeight

Check that the file is below the maximum height requirement (checked in
pixels)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxHeight', 150),
 'message' => 'File is above the maximum height'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxHeight', 150, false),
 'message' => 'File is above the maximum height'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isAboveMinWidth

Check that the file is above the minimum width requirement (checked in
pixels)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinWidth', 150),
 'message' => 'File is below the minimum width'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isAboveMinWidth', 150, false),
 'message' => 'File is below the minimum width'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

isBelowMaxWidth

Check that the file is below the maximum width requirement (checked in
pixels)

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxWidth', 150),
 'message' => 'File is above the maximum width'
)
);
?>

If the argument $requireUpload is passed, we can skip this check
when a file is not uploaded:

<?php
public $validate = array(
 'photo' => array(
 'rule' => array('isBelowMaxWidth', 150, false),
 'message' => 'File is above the maximum width'
)
);
?>

In the above, the variable $requireUpload has a value of false. By
default, requireUpload is set to true.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

FileImportBehavior

FileImportBehavior may be used to import files directly from the
disk. This is useful in importing from a directory already on the
filesystem.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	CakePHP-Upload 1.3.0 documentation

Thumbnail shell

What it does

The shell will look through your database for images and regenerate the thumbnails based on
your models Upload behaviour configuration. This allows you to change your thumbnail configuration and run the
shell to update your images without having to re-upload the image.

How it works

The shell takes the model you provide and checks that the Upload plugin is present and configured. Then it will loop
though all the images checking that the configured upload field is populated in the database and also ensuring that the
file exists on the file system. Then it will regenerate the thumbnails using the current model configuration.

Running the shell

You can run the shell from the command line as you would any cake shell.

Console/cake upload.thumbnail generate

You will then be asked which model you want to process, and the shell will then process your images.

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	CakePHP-Upload 1.3.0 documentation

Index

 Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		CakePHP-Upload 1.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jose Diaz-Gonzalez.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

